
2003 Special Issue

Evolving neural networks to identify bent-double galaxies

in the FIRST survey

Erick Cantú-Paz*, Chandrika Kamath

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 7000 East Avenue, L-561 Livermore, CA 94551, USA

Abstract

The FIRST (Faint Images of the Radio Sky at Twenty-cm) survey is an ambitious project scheduled to cover 10,000 square degrees of the

northern and southern galactic caps. Until recently, astronomers associated with FIRST identified radio-emitting galaxies with a bent-double

morphology through a visual inspection of images. Besides being subjective, prone to error and tedious, this manual approach is becoming

increasingly infeasible: upon completion, FIRST will include almost a million galaxies. This paper describes the application of six methods

of evolving neural networks (NNs) with genetic algorithms (GAs) to the identification of bent-double galaxies. The objective is to

demonstrate that GAs can successfully address some common problems in the application of NNs to classification problems, such as training

the networks, choosing appropriate network topologies, and selecting relevant features. We measured the overall accuracy of the networks

using the arithmetic and geometric means of the accuracies on bent and non-bent galaxies. Most of the combinations of GAs and NNs

perform equally well on our data, but using GAs to select feature subsets produces the best results, reaching accuracies of 90% using the

arithmetic mean and 87% with the geometric mean. The networks found by the GAs were more accurate than hand-designed networks and

decision trees.

Published by Elsevier Science Ltd.

Keywords: Astronomical surveys; Radio-emitting galaxies; Network design; Genetic algorithms; Feature extraction; Feature selection; Data mining

1. Introduction

The Faint Images of the Radio Sky at Twenty-cm

(FIRST) survey (Becker, White, & Helfand, 1995) started

in 1993 with the goal of producing the radio equivalent of

the Palomar Observatory Sky Survey. Using the Very

Large Array (VLA) at the National Radio Astronomy

Observatory, FIRST is scheduled to cover more than

10,000 square degrees of the northern and southern galactic

caps, to a flux density limit of 1.0 mJy (milli-Jansky). At

present, with the data from the 1993 through 2000

observations, FIRST has covered about 8,000 square

degrees, producing more than 32,000 images, each with

two-million pixels. At a threshold of 1 mJy, there are

approximately 90 radio-emitting galaxies, or radio sources,

in a typical square degree.

Radio sources exhibit a wide range of morphological

types that provide clues to the source class, emission

mechanism, and properties of the surrounding medium.

Sources with a bent-double morphology are of particular

interest as they indicate the presence of clusters of galaxies,

a key project within the FIRST survey. FIRST scientists

currently identify the bent-double galaxies by visual

inspection, which–besides being subjective, prone to error

and tedious–is becoming increasingly infeasible as the

survey grows in size.

Our goal is to bring automation to the classification of

galaxies using techniques from data mining, such as neural

networks (NNs). NNs have been used successfully to

classify objects in many astronomical applications (Adams

& Woolley, 1994; Odewahn & Nielsen, 1994; Odewahn,

Stockwell, Pennington, Humphreys, & Zumach, 1992;

Storrie-Lombardi, Lahav, Sodre, & Storrie-Lombardi,

1992). However, the success of NNs largely depends on

their architecture, their training algorithm, and the choice of

features used in training. Unfortunately, determining the

architecture of a neural network is a trial-and-error process;

the learning algorithms must be carefully tuned to the data;

and the relevance of features to the classification problem

may not be known a priori. Our objective is to demonstrate

that genetic algorithms (GAs) can successfully address the

topology selection, training, and feature selection problems,

resulting in accurate networks with good generalization

abilities. This paper describes the application of six

0893-6080/03/$ - see front matter Published by Elsevier Science Ltd.

doi:10.1016/S0893-6080(03)00020-0

Neural Networks 16 (2003) 507–517

www.elsevier.com/locate/neunet

* Corresponding author. Tel.: þ1-925-424-2467; fax: þ1-925-423-2993.

E-mail addresses: cantupaz@llnl.gov (E. Cantú-Paz), kamath2@llnl.

gov (C. Kamath).

http://www.elsevier.com/locate/neunet


combinations of GAs and NNs to the identification of bent-

double galaxies.

This study is one of a handful that compares different

methods of evolving neural nets on the same domain

(Grönross, 1998; Roberts & Turenga, 1995; Siddiqi &

Lucas, 1998). In contrast with other studies that limit their

scope to two or three methods, we use six combinations of

GAs and NNs and two measures of classification accuracy

to compare the results of the evolved networks against hand-

designed networks. Most of the methods we tried performed

equally well on our data, but using GAs to select feature

subsets yielded the best results. The experiments also

suggest that most of the GA and NN combinations produce

significantly more accurate classifiers than hand-designed

networks and decision trees.

This paper is organized as follows: Section 2 outlines the

problem of detecting bent-double radio-emitting galaxies in

the FIRST data, and provides details on the approach we

have taken to derive meaningful features from the data

available. Section 3 describes several combinations of GAs

and NNs that have appeared previously in the literature.

Section 4 presents our experiments and reports the results.

The paper concludes with our observations and plans for

future work.

2. Identification of bent-double galaxies

Fig. 1 includes several examples of radio sources from

the FIRST survey. While some bent-double galaxies are

relatively simple in shape (examples (a) and (b)), others,

such as the ones in examples (e) and (f), can be rather

complex. The task of automating the detection of

bent-doubles can be quite difficult as illustrated by the

similarity between the bent-double in example (a) and the

non-bent-double in example (c).

Raw and postprocessed data from FIRST are available on

the FIRST web site (sundog.stsci.edu). There are two forms

of data available for use: image maps and a catalog. Fig. 2

shows an image map containing examples of two bent-

doubles. These large image maps are mostly composed of

background noise. They are obtained by processing the raw

data collected by the VLA telescopes. Each image map

covers an area of approximately 0.45 square degrees, with

pixels that are 1.8 arc seconds wide.

In addition to the image maps, the FIRST survey also

provides a source catalog (White, Becker, Helfand, &

Gregg, 1997). The catalog is obtained by fitting two-

dimensional elliptic Gaussians to each radio source on an

image map. For example, the lower bent-double in Fig. 2 is

approximated by more than seven Gaussians while the

upper one is approximated by three Gaussians. Each entry in

the catalog corresponds to a single Gaussian. The catalog

entries include information such as the right ascension (RA,

analogous to longitude) and declination (Dec, analogous to

latitude) for the center of the Gaussian, the major and minor

axes of the ellipse, the peak flux, and the position angle of

the major axis (degrees counterclockwise from North). Note

that we differentiate between catalog entries and radio

sources, with a radio source being composed of one or more

catalog entries. The results in this paper are based on the

2000 version of the catalog, which includes data from 1993

to 2000.

We decided that, initially, we would identify the radio

sources and extract the features using only the catalog.

The astronomers expected that the catalog was a good

Fig. 1. Example radio sources from FIRST: (a)–(b) Bent-doubles, (c)–(d) Non-bent doubles, and (e)–(f) Complex sources.

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517508



approximation to all but the most complex of radio sources,

and several of the features they thought were important in

identifying bent-doubles were easily calculated from the

catalog.

Our first task in classifying the bent-doubles was to

group the catalog entries (i.e., the elliptic Gaussians) into

radio sources. Our algorithm starts with an entry in the

catalog, searches for other entries within a region of

interest of 0.96 arc minutes or restarts the search from

each newly found entry, and repeats until no more new

catalog entries are found within the region of interest.

All catalog entries found in this search are collected to

form a radio source. Next, the algorithm repeats the

entire grouping procedure starting from the next available

catalog entry, excluding any entries that are part of

already existing radio sources.

After grouping the catalog entries into complex radio

sources, we separated the data depending on the number of

catalog entries that make up the sources. There is a data set

each for the 1-entry sources, the 2-entry sources, the

3-entry sources, and the 3-plus-entry sources. This

separation by the number of catalog entries was done for

several reasons. First, using features from only the catalog,

there were unlikely to be any ‘bent-doubles’ in the single-

catalog-entry sources. Further, there are relatively few 3-

plus-entry sources, all of which are ‘interesting’ to the

astronomers, regardless of whether they are bent-doubles

or not. So, we simply flag them and report them to the

scientists.

Having removed the 1-entry and the 3-plus-entry radio

sources from consideration, we further split the sources into

two- and three-entry sources. This was done because the

number of features extracted depends on the number of

catalog entries, and we wanted a feature vector with a

uniform length. However, this also meant that the size of

the training set for the detection of bent-doubles was now

divided into smaller training sets.

For the 2000 catalog, the number of radio sources as a

function of the number of catalog entries they are composed

of, is as follows:

Catalog entries Radio sources

1 514637

2 66571

3 15059

3 þ 6333

Once the radio sources (including the training set) were

separated based on the number of catalog entries in the

galaxy, we derived the features described below.

2.1. Features for bent-doubles

This section describes the features we are using to

discriminate galaxies with bent-double morphology. Our

focus is on features that are scale, rotation and translation

invariant, as the bent-double pattern we are looking for has

these properties. We are also interested in features that are not

sensitive to small changes in the data (White, 1999). Of

course, the features we select must be relevant to the problem.

We identified the features for the bent-double problem

through extensive conversations with FIRST astronomers.

When they justified their decisions classifying a radio

source as a bent-double, they placed great importance on

spatial features such as distances and angles. Frequently, the

astronomers would characterize a bent-double as a radio-

emitting ‘core’ with one or more additional components at

various angles, which were usually side-wakes left by the

core as it moved relative to the Earth.

Fig. 2. FIRST data: images maps and catalog entries.

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517 509



We have concentrated our work on the 3-entry instances,

because we have more labeled examples of this type. Our

previous experience with this data suggested that the best

accuracies are usually achieved using features extracted

considering triplets of catalog entries. Therefore, in the

remainder of this paper we focus on these features. A full list

of features is described by Fodor, Cantú-Paz, Kamath, and

Tang (2000).

There are different ways of ordering the entries in a 3-

entry source, and the order affects the extraction of features.

First, we need to identify the ‘core’ of the galaxy. If we

consider the triangle formed by the centers of the three

Gaussians, the core is the entry opposite to the longest side.

In the following, assume that A is the core. Fig. 3 depicts a

possible arrangement of the three catalog entries which is

used to calculate the following features:

1. totArea: the sum of the three areas of the elliptic

Gaussians

2. peakFlux: the maximum of the three peak fluxes of the

entries

3. sumIntFlux: the sum of the three integrated fluxes of the

entries

4. avgDiffusion: the mean of the three diffusions

5. totEllipt: the sum of the three ellipticities

6. maxFlux: the maximum of the three integrated fluxes

7. coreAngl: the core angle, defined as the angle BAC in

the triangle above

8. angleAB: angle ACB in the triangle above (between

sides a and b)

9. angleAC: angle ABC in the triangle above (between

sides a and c)

10. totalBendGeom: the total bentness of the source, equal

to the sum of angles AMB and ANC.

11. totalBendDiff: the total bentness of the source, equal to

the sum of lAPosAngle 2 BPosAnglel and

lAPosAngle 2 CPosAnglel, where XPosAngle

denotes the angle of the major axis of entry X,

measured counterclockwise from North.

12. ariAngl ¼ acos BC=ðAB þ ACÞ : a measure of bentness

(Lehàr, Buchalter, McMohan, Kochanek, & Muxlow,

2001) suggested by Ari Buchalter

13. ABAnglSide: the angle formed by the major axis of B

with the AB segment, angle ABM

14. ACAnglSide: the angle formed by the major axis of C

with the AC segment, angle ACN

15. sumComDist: the sum of the three pairwise distances

between the centers of entries

16. sumRelDist: the sum of the three pairwise relative

distances, calculated as

4XYComDist

XMaj þ XMin þ YMaj þ YMin
;

where for a pair of entries X and Y, XYComDist is the

distance between their centers, and Xmaj, XMin

denote the major and minor axis of entry X

17. axialSym: a symmetry measure given by the ratio of the

ellipticities of entries B and C

18. arisym ¼ AC=AB : a symmetry measure (Lehàr et al.,

2001) suggested by Ari Buchalter

19. anotherSym ¼ ðAB þ ACÞ=ðAB þ BC þ ACÞ : another

symmetry measure

20. consDemote: {0/1} flag, 1 if one of the non-core entries

is far from the core, and 0 otherwise (B is considered far

if AB . 2 £ const £ (AMaj þ BMaj), where const is

currently set to 3 arc seconds; similarly for C).

Unfortunately, our training set is relatively small,

containing 195 examples for the three-catalog entry sources.

Since FIRST scientists must manually label the bent- and

non-bent-doubles, putting together an adequate training set

is non-trivial. Moreover, scientists are usually subjective in

their labeling of galaxies, and they often disagree in the

hard-to-classify cases. There is also no ground truth we can

use to verify our results. These issues imply that the training

set itself is not very accurate, and there is a limit to the

accuracy we can obtain with semi-automated techniques.Fig. 3. An example of a 3-entry radio source.

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517510



Among the 195 labeled examples of 3-entry sources, 28

are non-bent and 167 are bent-double galaxies. This

unbalanced distribution of classes in the training set presents

some problems in estimating the accuracy of the NNs,

which are discussed in Section 4.

3. Genetic neural networks

GAs and NNs have been combined in two major ways.

First, GAs have been used to train or to aid in the training of

NNs. In particular, GAs have been used to search for the

weights of the network, or to reduce the size of the training

set by selecting the most relevant features. The second

major type of collaboration is to use GAs to design the

structure of the network. The structure largely determines

the efficiency of the network and the classes of problems

that it can solve. It is well known that to solve non-linearly

separable problems, the network must have at least one

hidden layer between the inputs and outputs; but determin-

ing the number and the size of the hidden layers is mostly a

matter of trial and error. GAs have been used to search for

these parameters, as well as for the pattern of connections

and for developmental instructions to generate a network.

The interested reader may consult the reviews by Branke

(1995), Schaffer (1994) and Yao (1999).

This section first reviews some basic concepts from GAs.

Then, we describe how to use GAs to train NNs, to select

features, and to determine the topology of the network.

3.1. Genetic algorithms

Genetic algorithms are randomized search procedures

inspired by the mechanics of genetics and natural selection

(Goldberg, 1989). GAs operate on a population of

individuals that represent possible solutions to a problem.

The representation of a solution is defined by the user and

may be as simple as a string of zeroes and ones, which is the

representation used in this paper. The initial population may

be created entirely at random or using some domain

knowledge (in the form of previously known solutions, for

example). The algorithm evaluates the individuals to

determine how well they solve the problem at hand with

an objective function, which is unique to each problem and

must be supplied by the user. The individuals with better

performance are selected into a mating pool to serve as

parents of the next generation of individuals. GAs create

new individuals using simple randomized operators that are

inspired by sexual recombination (crossover) and mutation

in natural organisms. The new solutions are evaluated, and

the cycle of selection and creation of new individuals is

repeated until a satisfactory solution is found or a

predetermined time limit elapses.

There are numerous methods to select promising solutions

into the mating pool. This paper uses binary (pairwise)

tournaments, which is one of the simplest selection methods.

This selection randomly selects two individuals without

replacement from the current population, and the most fit

individual (according to the objective function) is incorpor-

ated into the mating pool. The random pairing of individuals

is repeated twice to obtain a mating pool of the same size as

the original population.

The crossover operator used in the experiments is multi-

point crossover. This operator randomly chooses a pair of

previously selected individuals from the mating pool and a

number of crossover points along their chromosomes.

Crossover exchanges segments of the two chromosomes

delimited by the crossover points. Fig. 4 shows an example

of two-point crossover.

In GAs, mutation occurs with a low frequency. It consists

of flipping one randomly chosen bit from zero to one or vice

versa. Some theoretical studies support the use of a mutation

rate of 1=l; where l is the length of the chromosome (Bäck,

1996; Mühlenbein, 1992). Although our application may not

satisfy the assumptions made in those studies, this choice of

mutation rate has been successful in several practical

situations, and we adopt it for our experiments.

3.2. Training networks with genetic algorithms

Training a neural net is an optimization task with the goal

of finding a set of weights that minimizes some error

measure. The search space is high dimensional and,

depending on the error measure, it may contain numerous

local optima. Some traditional network training algorithms,

such as backpropagation (BP), use some form of gradient

search, and may get trapped in local optima. In contrast,

GAs do not use any gradient information, and are likely to

avoid getting trapped in a local optimum by sampling

simultaneously multiple regions of the space.

A straightforward combination of GAs and NNs is to use

the GA to search for weights that make the network perform

as desired. The user prior to the experiment fixes the

architecture of the network. In this approach, each

individual in the GA represents a vector with all the weights

of the network. This method has three variants:

† Start from scratch and use the weights found by the GA

in the network without any further refinement (Caudell &

Dolan, 1989; Montana & Davis, 1989; Whitley &

Hanson, 1989). This is particularly useful when the

activation function of the neurons is non-differentiable.

† Use BP or other methods to refine the weights found by

the GA (Kitano, 1990b; Skinner & Broughton, 1995).

The motivation of this approach is that GAs quickly

Fig. 4. Example of two-point crossover.

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517 511



identify promising regions of the search space, but they

do not fine-tune parameters very fast. So, GAs are used to

find a promising set of initial weights from which a

gradient-based method can quickly reach an optimum.

This approach extends the processing time per individ-

ual, but sometimes the overall training time can be

reduced because fewer individuals may need to be

considered before reaching an acceptable solution.

† Use the GA to refine weights found by a traditional NN

learning algorithm (Kadaba & Nygard, 1990). In general,

seeding the initial population is an effective way to bias

the GA toward good solutions.

These approaches are straightforward and have produced

good results, but suffer from several problems. First, since

adjacent layers in a network are usually fully connected, the

total number of weights is Oðn2Þ; where n is the number of

units. Longer individuals usually require larger populations,

which in turn result in higher computational costs. For small

networks, the GA can be used to search for good weights

efficiently, but this method may not scale up to larger

domains.Another drawback is the so-called permutations

problem (Radcliffe, 1990). The problem is that by permut-

ing the hidden nodes of a network, the representation of the

weights in the chromosome would change, although the

network is functionally the same. Some permutations may

not be suitable for GAs because crossover might easily

disrupt favorable combinations of weights. To ameliorate

this problem, Thierens, Suykens, Vandewalle, and Moor

(1991) suggested placing incoming and outgoing weights of

a hidden node next to each other. An analysis by Hancock

(1992) suggested that the permutation problem is not as

difficult as it is often presented, and Thierens (1995)

presented an encoding that avoids the permutations problem

altogether.

3.3. Feature selection

Besides searching for weights, GAs may be used to select

the features that are input to the NNs. The training examples

may contain features that are irrelevant or redundant, but it

is generally unknown a priori which features are relevant.

Avoiding irrelevant and redundant features is desirable not

only because they increase the size of the network and the

training time, but also because they may reduce the

accuracy of the network.

Applying GAs to the feature selection problem is

straightforward, using what is referred to as the wrapper

approach: the chromosome of the individuals contains one

bit for each feature, and the value of the bit determines

whether the feature will be used in the classification (Brill,

Brown, & Martin, 1990; Brotherton & Simpson, 1995). The

individuals are evaluated by training the networks (that have

a predetermined structure) with the feature subset indicated

by the chromosome. The resulting accuracy is used to

calculate the fitness.

3.4. Using GAs to design the topology

As mentioned before, the topology of a network is crucial

to its performance. If a network has too few nodes and

connections, it may not be able to learn the required

concept. On the other hand, if a network has too many nodes

and connections, it may overfit the training data and have

poor generalization. There are two basic approaches to use a

GA to design the topology of a NN: use a direct encoding to

specify every connection of the network or evolve an

indirect specification of the connectivity.

The key idea behind direct encodings is that a neural

network may be regarded as a directed graph where each

node represents a neuron and each edge is a connection. A

common method of representing directed graphs is with a

binary connectivity matrix: the i; j-th element of the matrix

is one if there is an edge between nodes i and j; and zero

otherwise. The connectivity matrix can be represented in a

GA simply by concatenating its rows or columns (Belew,

McInerney, & Schraudolph, 1991; Miller, Todd, & Hegde,

1989). Using this method, Whitley, Starkweather, and

Bogart (1990) showed that the GA can find topologies

that learn faster than the typical fully connected feedforward

network. The GA can be explicitly biased to favor smaller or

sparsely connected networks, which can be trained faster.

However, since each connection is explicitly coded, the

length of the individuals is Oðn2Þ (where n is the number of

neurons), and the algorithm is not scalable to large

problems.

A simple method to avoid specifying all the connections

is to commit to a particular topology (feedforward,

recurrent, etc.) and a particular learning algorithm, and

then use the GA to find the parameter values that complete

the network specification. For example, with a fully

connected feedforward topology the GA may search for

the number of layers and the number of neurons per layer.

Another example would be to code the parameters of a

particular learning algorithm, such as the momentum and

the learning rate of BP (Belew et al., 1991; Marshall &

Harrison, 1991). By specifying only the parameters for a

given topology, the coding is very compact and well suited

for a genetic algorithm. However, this method is constrained

by the initial choice of topology and learning algorithm.

A more sophisticated approach to indirect represen-

tations is to use a grammar to encode rules that govern the

development of a network. Kitano (1990a) introduced the

earliest grammar-based approach. He used a connectivity

matrix to represent the network, but instead of encoding the

matrix directly in the chromosome, he used a graph-

rewriting grammar to generate the matrix. The chromo-

somes contain rules that rewrite scalar matrix elements into

2 £ 2 matrices.

In this grammar, there are 16 terminal symbols that are

2 £ 2 binary matrices. There are 16 non-terminal symbols,

and the rules have the form n ! m;where n is one of the scalar

non-terminals, and m is a 2 £ 2 matrix of non-terminals.

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517512



There is an arbitrarily designated start symbol, and the

number of rewriting steps is fixed by the user.

Only the 16 right-hand sides of the rules are contained in

the chromosome, the left side is implicit in the position of

the rule. To evaluate the fitness of individuals, the rules are

decoded and the connectivity matrix is developed by

applying all the rules that match non-terminal symbols.

Then, the connectivity matrix is interpreted and the network

is constructed and trained with BP.

Perhaps the major drawback in this approach is that the

number of units must be 2i (where i is any non-negative

integer), because after each rewriting step the size of the

matrix doubles in each dimension.

Other examples of grammar-based developmental sys-

tems are the work of Boers and Kuiper (1992) with

Lindenmayer systems, Gruau’s cellular encoding method

(Gruau, 1992), and the system of Nolfi, Elman, and Parisi

(1994) that simulates cell growth, migration, and

differentiation.

4. Experiments

This section details the experimental methods and the

results that we obtained with six combinations of NNs and

GAs.

The programs were written in Cþþ and compiled with

gþþ version 2.96. The experiments were executed on a

single processor of a Linux (Red Hat 7.1) workstation with

dual 1.5 GHz Intel Xeon processors and 512 Mb of memory.

The programs used a Mersenne Twister random number

generator.

All the GAs used a population of 50 individuals. As

mentioned in Section 3.1, we used a simple GA with binary

encoding, pairwise tournament selection, and multi-point

crossover. The number of crossover points was varied in

each experiment according to the length of the chromo-

somes, l: In all cases, the probability of crossover was 1, and

the probability of mutation was set to 1=l: The initial

population was initialized uniformly at random.

The experiments used feedforward networks with one

hidden layer. All neurons are connected to a ‘bias’ unit with

constant output of 1.0. Unless specified otherwise, the

output units are connected to all the hidden units, which in

turn are connected to all the inputs. In feedforward

operation, the units compute their net activation as

net ¼
Xd

i¼1

xiwi þ w0; ð1Þ

where d is the number of inputs to the neuron, xi is an input,

wi is the corresponding weight, and w0 is the weight

corresponding to the ‘bias’ unit. Each unit emits an output

according to

f ðnetÞ ¼ tanhðbnetÞ; ð2Þ

where b is a user-specified coefficient. Simple BP was used

in some of the experiments. The weights from the hidden to

the output layer were updated using

Dwkj ¼ hdkyj ¼ hðtk 2 zkÞf
0ðnetkÞyj; ð3Þ

where h denotes the learning rate, k indexes the output units,

tk the desired output, zk the actual output, f 0; is the derivative

of f ; and yj is the output of the j-th hidden unit. The weights

from the i-th input to the hidden layer were updated using

Dwji ¼ h
Xc

k¼1

wkjdk

" #
f 0ðnetjÞxi: ð4Þ

In all experiments, each feature in the data was linearly

normalized to the interval [21,1]. The type of galaxy was

encoded in one output value (21 for bent and 1 for non-

bent). When back-propagation was used, the examples were

presented in random order for 20 epochs. All the results

reported are averages over 10 runs of the algorithms.

Comparisons are made using standard paired t-tests with

95% confidence.

4.1. Fitness calculation

One of the crucial design decisions for the application of

GAs is the calculation of fitness values for each member of

the population. Since we are interested in networks that

predict accurately the type of galaxies that were not used in

training, the fitness calculation must include an estimate of

the generalization ability of the networks.

There are multiple ways to estimate generalization that

we could use for our experiments with GAs. One approach

is to partition the data into training and testing sets, use the

training set as input to BP, and use the accuracy on the

testing set to calculate the fitness. If enough data are

available, the generalization may be better estimated by

dividing the training data into training and validation sets.

The training set is used to adjust the weights with back

propagation, and the accuracy of the trained network on the

validation set is used to calculate the fitness. The final

network that results from the GA execution is tested on an

independent testing set that has not used in any way during

the execution of the GA. Ideally, the experiment should be

repeated with different partitions of training, validation, and

testing sets.

Since we do not have much training data, the procedure

above is not practical in our case. An alternative way to

estimate the generalization of the network is to use

crossvalidation experiments. In this method, the data D is

divided into k; non-overlapping sets, D1;…Dk: At each

iteration i (from 1 to k), the network is trained with D\Di and

tested on Di: In our experiments, we used the accuracy

estimated by a single five-fold crossvalidation as the fitness.

A better estimate of accuracy would be to use an average of

multiple crossvalidation experiments, but we found the cost

excessive.

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517 513



Following our earlier work with this data using decision

trees (Fodor et al., 2000), we first calculated the accuracy as

the fraction of instances classified correctly. This is the most

common measure of accuracy, but in our case it may give

overly optimistic results, because our labeled data is

unbalanced with far more examples of bent-double than

non-bent-double galaxies. To correct for this unbalance, we

also present results where we calculate the accuracy as the

geometric mean of the accuracies for each class of galaxy

(bent and non-bent) (Kubat & Matwin, 1997).

4.2. Training networks with GAs

We implemented the first of the methods described in

Section 3.2: the GA was used to find the network’s weights.

The network had 20 inputs that correspond to each of the

features in the data, 25 hidden nodes, and one output. Each

weight was represented with 10 bits, and the range of

possible weights was [210,10].

For this experiment, the GA used a population of 50

individuals, each with a length of l ¼ 5510 bits (there are

551 total weights). The number of crossover points was set

at 25, and the mutation rate was 0.00018 ð< 1=lÞ: As in all

experiments, pairwise tournament selection without repla-

cement was used to select promising solutions.

The second training method described in Section 3.2 is to

run BP using the weights represented by the individuals in

the GA to initialize the network. We implemented this

method and used the same network architecture and GA

parameters as in the previous experiment. Each network was

trained with 20 epochs of BP with a learning rate h of 0.1

and b of 0.4.

The entries WEIGHTS and WEIGHTS þ BP in Tables 1

and 2 present the average accuracy of the best networks

found in each run of the GA for these two sets of

experiments. The results highlighted in bold in the tables

are the best results and those not significantly worse than the

best (according to the t-test, which may detect more

differences than there actually exist).

4.3. Feature selection

The next combination of GAs and NNs is to use the GA

to select a subset of features that will be used to train the

networks, as described in Section 3.3. As in previous

experiments, we set the number of hidden units to 25, the

learning rate to 0.1 and b to 0.4. The networks were trained

with 20 epochs of BP.

Our data has 20 features, and therefore the chromosomes

in the GA are 20 bits long. The GA used one-point crossover

and the same parameters as in previous experiments. The

accuracy results are labeled FEATURE SEL and are

significantly better than the other overall results in

Tables 1 and 2.

The GAs consistently selected approximately half of the

features. Table 3 and 4 present the features selected by each

of the ten runs using both accuracy measurements. The GAs

frequently selected features that appear to be relevant to the

problem of identifying bent-double galaxies, such as

sumRelDist, ariSym, angleAB, and peakFlux.

4.4. Using GAs to design the networks

For our first application of GAs to network design, the

GA was used to find the number of hidden units, the

parameters for BP, and the range of initial weights as

described in Section 3.4. The learning rate was encoded

with four bits and the range of possible values was [0,1].

The coefficient b for the activation function was also

encoded with four bits and its range was [0,1]. The upper

and lower ranges for the initial weights were encoded

with five bits each and were allowed to vary in [210,0]

and [0,10], respectively. Finally, the number of hidden

units was represented with seven bits and could take

values in [0,127].

After extracting the parameters from a chromosome, a

network was built and initialized according to the

parameters and trained with 20 epochs of BP. As in all the

experiments, the crossvalidated accuracy (arithmetic and

geometric mean versions) was used as the fitness of the

networks. There are no explicit biases in the fitness to prefer

Table 2

Mean accuracies on the bent and non-bent doubles and overall accuracy for

different combinations of GAs and NNs using the geometric mean of class-

wise accuracies as fitness. The numbers in parenthesis are the standard

errors, and the results in bold are the best and those not significantly worse

than the best

Method Bent-doubles Non-bent Overall

WEIGHTS 86.34 (2.83) 78.01 (4.13) 80.98 (2.41)

WEIGHTS þ BP 91.89 (0.67) 75.23 (0.87) 81.68 (0.53)

FEATURE SEL 92.99 (0.55) 83.65 (1.41) 87.51 (0.77)

PARAMETERS 92.35 (0.89) 69.13 (1.56) 78.76 (0.57)

MATRIX 93.58 (0.46) 70.77 (1.34) 80.22 (0.69)

GRAMMAR 92.84 (0.69) 73.73 (1.40) 81.78 (0.72)

Table 1

Mean accuracies on the bent and non-bent doubles and overall accuracy for

different combinations of GAs and NNs using the arithmetic mean of class-

wise accuracies as fitness. The numbers in parenthesis are the standard

errors, and the results in bold are the best and those not significantly worse

than the best

Method Bent-Doubles Non-Bent Overall

WEIGHTS 97.15 (0.80) 30.36 (8.38) 85.68 (2.07)

WEIGHTS þ BP 95.42 (0.43) 43.28 (3.49) 87.58 (0.40)

FEATURE SEL 95.53 (0.52) 60.40 (4.27) 90.00 (0.56)

PARAMETERS 96.02 (0.54) 35.12 (3.85) 87.02 (0.44)

MATRIX 95.66 (0.26) 41.29 (3.98) 88.00 (0.47)

GRAMMAR 95.36 (0.37) 40.78 (3.67) 87.07 (0.33)

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517514



smaller networks, but there is an implicit bias toward

networks that can learn quickly, since we are using only 20

epochs of BP. It is probable that small networks learn faster

than larger ones, and so it is likely that the GA favors small

networks. The GA used two-point crossover and the same

parameters as in previous experiments. The accuracy results

are labeled PARAMETERS in Tables 1 and 2. On average,

the best learning rate found by the GA was 0.82 (with 0.06

std. error), which is higher than the usual recommendation

of 0.1–0.2 (Duda, Hart, & Stork, 2001). Perhaps the

learning rate is high because of the implicit bias for learning

quickly. This bias may also explain the average number of

hidden units being relatively small at 15.6 (std. error 2.8).

The average b was 0.16 (0.01), and the range of initial

weights was [23.51,3.45] (both with std. errors of 0.4).

In the next experiment, we used the GA to search for a

connectivity matrix as described in Section 3.4. As in

previous experiments, we fixed the number of hidden units

to 25, the learning rate to 0.1 and b to 0.4. The neurons are

numbered consecutively starting with the inputs and

followed by the hidden units and outputs. The connectivity

matrix is encoded by concatenating its rows. Since we allow

direct connections between the inputs and the outputs,

the string length is ðhidden þ outputsÞinputs þ hidden £

outputs ¼ ð26 £ 20Þ þ ð25 £ 1Þ ¼ 545 bits: For this longer

string, we use 10 crossover points, and the same GA

parameters as before. The results corresponding to this

method are labeled MATRIX in Tables 1 and 2.

We also implemented Kitano’s graph rewriting grammar

method. We limited the number of rewriting steps to 6,

resulting in networks with at most 64 units. Since the

chromosomes encode four 2 £ 2 binary matrices for each of

the 16 rules, the string length is 256 bits. The GAs used five

crossover points. The results obtained with this method are

labeled GRAMMAR in Tables 1 and 2.

4.5. Comparison and discussion

The results using the standard accuracy (table 1) do not

show major differences among the different methods that we

tried. Only the feature selection method has a significantly

better overall accuracy than any other method, as well as a

better accuracy on detecting non-bent doubles.

Using the geometric mean of the accuracies of each type

of galaxy (Table 2), the overall results are lower than with

the standard accuracy measure. This reduction is expected,

Table 3

Features selected on 10 runs by the GA using the arithmetic mean of class-wise accuracies as fitness. The last row is the number of times a feature was selected,

and the last column is the number of features selected on each run. The features are described in Section 2.1

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Selected

1 1 1 1 1 1 1 1 8

1 1 1 1 1 1 1 1 1 1 1 11

1 1 1 1 1 1 1 1 1 9

1 1 1 1 1 1 1 7

1 1 1 1 1 1 6

1 1 1 1 1 1 1 7

1 1 1 1 1 1 1 1 1 1 10

1 1 1 1 1 1 1 1 1 8

1 1 1 1 1 1 1 1 1 1 1 1 12

1 1 1 1 1 5

Total 4 8 4 5 3 5 3 8 3 1 2 4 0 5 3 10 2 9 4 1

Table 4

Features selected on 10 runs by the GA using the geometric mean of class-wise accuracies as fitness. The last row is the number of times a feature was selected,

and the last column is the number of features selected on each run. The features are described in Section 2.1

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Selected

1 1 1 1 1 1 1 1 1 1 1 1 12

1 1 1 1 1 1 1 1 1 1 1 1 12

1 1 1 1 1 1 1 1 1 1 10

1 1 1 1 1 1 1 7

1 1 1 1 1 1 1 1 8

1 1 1 1 1 1 1 1 8

1 1 1 1 1 1 1 1 1 9

1 1 1 1 1 1 10 1 1 1 10

1 1 1 1 1 1 1 7

1 1 1 1 1 1 1 7

Total 4 6 3 4 4 6 6 9 7 1 0 6 2 0 5 10 3 7 6 1

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517 515



since our training data is unbalanced toward one of the two

classes: with the standard accuracy measure, even if the

networks make numerous mistakes in the minority class (the

non-bent doubles), the overall accuracy is dominated by the

high accuracy in the majority class. In contrast, the

geometric mean gives equal weight to the accuracies on

both types of galaxies in the overall performance. We can

observe a notable increase in the accuracy for the non-bents

in Table 2. Overall, the feature selection method seems to

outperform the others.

We also performed numerous experiments with networks

designed by hand. The best parameters that we could find

for 20 epochs of BP were those used in the experiments with

the GAs: b ¼ 0:1; the learning rate was 0.4, and the number

of hidden was 25. The average of ten, ten-fold cross-

validation experiments resulted in an overall accuracy of

84.63% (with std. error of 0.4), which is significantly worse

than all of the results in Table 1, except for WEIGHTS.

However, the accuracy of the hand-designed network on the

non-bents is only 16.4% (1.7) and on the bents is 99.69%

(0.16). The overall accuracy estimated with the geometric

mean is a disappointing 23.41% (2.02).

Increasing the number of training epochs to 100 raised

the standard accuracy to 88.52% (0.44) and the geometric

mean accuracy to 72.69% (0.32). The accuracy on the non-

bents also improved to 56.7%, while the accuracy on the

bents decreased slightly to 94.38%.

We also applied decision trees to this data. The decision

trees used the Gini splitting criterion and pessimistic error

pruning. The overall arithmetic mean accuracy of ten ten-

fold crossvalidation experiments was 87% with a standard

error of 0.42. This result is less accurate than all the

combinations of GAs and NNs reported in Table 1, except

for WEIGHTS.

Using the geometric mean and ten ten-fold crossvalida-

tions, we estimated the overall accuracy of a single tree as

74.09% (with standard error of 1.3%), which is less accurate

than all the GAs and NNs combinations in Table 2.

5. Conclusions

This paper presented a comparison of six combinations

of GAs and NNs for the identification of bent-double

galaxies in the FIRST survey. Our experiments suggest that,

for this application, some combinations of GAs and NNs

can produce accurate classifiers that are competitive with

networks designed by hand. For our application, we found

few differences among the GA and NN combinations that

we tried. The only consistently best method was to use the

GA to select the features used to train the networks, which

suggests that some of the features in the training set are

irrelevant or redundant.

There are several avenues to extend this work. The

highly unbalanced training set presents some difficulties that

could be avoided or ameliorated by including more

examples of the minority class. Extending the training set

is non-trivial, as we mentioned in Section 2.1, because the

labeling is subjective and disagreements among the experts

are common.

Other optimization techniques, evolutionary and tra-

ditional, can be used to train NNs. In this paper we used a

simple genetic algorithm with a binary encoding, but other

evolutionary algorithms operate on vectors of real numbers,

which can be directly mapped to the network’s weights or

the BP parameters (but not to a connectivity matrix, a

grammar, or a feature selection application). There are other

combinations of GAs and NNs that we did not include in

this study, but appear promising. For instance, since

evolutionary algorithms use a population of networks, a

natural extension of this work would be to use evolutionary

algorithms to create ensembles that combine several NNs to

improve the accuracy of classifications.

A big disadvantage in using GAs in combination with

NNs is the long computation time required. This can be an

obstacle to applying these techniques to larger data sets, but

there are numerous alternatives to improve the performance

of GAs. For instance, we could approximate the fitness

evaluation using sampling or we can exploit the inherently

parallel nature of GAs using multiple processors.

Acknowledgements

We gratefully acknowledge our FIRST collaborators

Robert Becker, Michael Gregg, David Helfand, Sally

Laurent-Muehleisen, and Richard White for their technical

interest and support of this work. We would also like to

thank Imola K. Fodor and Nu Ai Tang for useful discussions

and computational help.UCRL-JC-146705. This work was

performed under the auspices of the US Department of

Energy by University of California Lawrence Livermore

National Laboratory under contract No. W-7405-Eng-48.

References

Adams, A., & Woolley, A. (1994). Hubble classification of galaxies using

neural networks. Vistas in Astronomy, 38, 273–280.

Bäck, T. (1996). Evolutionary algorithms in theory and practice, New

York: Oxford University Press.

Becker, R. H., White, R., & Helfand, D. (1995). The FIRST survey: Faint

images of the radio sky at twenty-cm. Astrophysical Journal, 450,

559–599.

Belew, R., McInerney, J., & Schraudolph, N. (1991). Evolving networks:

Using the genetic algorithm with connectionist learning. Proceedings

of the Second Artificial Life Conference, New York: Addison-Wesley,

pp. 511–547.

Boers, J. W., & Kuiper, H (1992). Biological metaphors and the design of

modular artificial neural networks. Master’s thesis, Leiden University,

The Netherlands.

Branke, J. (1995). Evolutionary algorithms in neural network design and

training—a review. In J. T. Alander (Ed.), Proceedings of the First

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517516



Nordic Workshop on Genetic Algorithms and their Applications (pp.

145–163). Finland: Vaasa.

Brill, F. Z., Brown, D. E., & Martin, W. N., (1990). Genetic algorithms for

feature selection for counter-propogation networks (Tech. Rep. No.

IPC-TR-90-004). Charlottesville: University of Virginia, Institute of

Parallel Computation.

Brotherton, T. W., & Simpson, P. K. (1995). Dynamic feature set training of

neural nets for classification. In J. R. McDonnell, R. G. Reynolds, &

D. B. Fogel (Eds.), Evolutionary Programming IV (pp. 83–94). MIT

Press: Cambridge, MA.

Caudell, T. P., & Dolan, C. P. (1989). Parametric connectivity: training of

constrained networks using genetic algorithms. In J. D. Schaffer (Ed.),

Proceedings of the Third International Conference on Genetic

Algorithms (pp. 370–374). San Mateo, MA: Morgan Kaufmann.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification, New

York: Wiley.

Fodor, I. K., Cantú-Paz, E., Kamath, C., & Tang, N. (2000). Finding bent-

double radio galaxies: A case study in data mining. Interface: Computer

Science and Statistics, 33.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and

machine learning, Reading, MA: Addison-Wesley.

Grönross, M. A (1998). Evolutionary design of neural networks. Master’s

thesis, University of Turku, Finland.

Gruau, F. (1992). Genetic synthesis of boolean neural networks with a cell

rewritting developmental process. In D. Whitley, & J. D. Schaffer

(Eds.), Proceedings of the International Workshop on Combinations of

Genetic Algorithms and Neural Networks (pp. 55–74). Los Alamitos,

CA: IEEE Computer Society Press.

Hancock, P. J. B. (1992). Recombination operators for the design of neural

nets by genetic algorithm. In R. Männer, & B. Manderick (Eds.),

Parallel Problem Solving from Nature II (pp. 441–450) Amsterdam:

Elsevier Science.

Kadaba, N., & Nygard, K. E. (1990). Improving the performance of genetic

algorithms in automated discovery of parameters. In B. Porter, & R.

Mooney (Eds.), Machine Learning: Proceedings of the Seventh

International Conference (pp. 140–148). Morgan Kaufmann: San

Mateo, CA.

Kitano, H. (1990a). Designing neural networks using genetic algorithms

with graph generation system. Complex Systems, 4(4), 461–476.

Kitano, H. (1990b). Empirical studies on the speed of convergence of neural

network training using genetic algorithms. Proceedings of the Eighth

National Conference on Artificial Intelligence, 789–795.

Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced

training sets: One-sided selection. Proceedings of the 14th Inter-

national Conference on Machine Learning, San Francisco, CA: Morgan

Kaufmann, pp. 179–186.

Lehàr, J., Buchalter, A., McMahon, R. G., Kochanek, C. S., & Muxlow,

T. W. B. (2001). An efficient search for gravitationally lensed radio

lobes. Astrophysical Journal, 547, 60–76.

Marshall, S. J., & Harrison, R. F. (1991). Optimization and training of

feedforward neural networks by genetic algorithms. Proceedings on the

Second International Conference on Artificial Neural Networks and

Genetic Algorithms, Berlin: Springer, pp. 39-43.

Miller, G. F., Todd, P. M., & Hegde, S. U. (1989). Designing neural

networks using genetic algorithms. In J. D. Schaffer (Ed.), Proceedings

of the Third International Conference on Genetic Algorithms (pp.

379–384). San Mateo, CA: Morgan Kaufmann.

Montana, D. J., & Davis, L. (1989). Training feedforward neural networks

using genetic algorithms. Proceedings of the Eleventh International

Joint Conference on Artificial Intelligence, San Mateo, CA: Morgan

Kaufmann, pp. 762–767.

Mühlenbein, H. (1992). How genetic algorithms really work: I.Mutation

and Hillclimbing. In R. Männer, & B. Manderick (Eds.), Parallel

Problem Solving from Nature II (pp. 15–25) Amsterdam: Elsevier

Science.

Nolfi, S., Elman, J. L., & Parisi, D. (1994). Learning and evolution in neural

networks. Adaptive Behavior, 3(1), 5–28.

Odewahn, S., & Nielsen, M. (1994). Star-galaxy separation using neural

networks. Vistas in Astronomy, 38, 281–286.

Odewahn, S., Stockwell, E., Pennington, R., Humphreys, R., & Zumach,

W. (1992). Automated star/galaxy discrimination with neural networks.

The Astronomical Journal, 103(1), 318–331.

Radcliffe, N. J (1990). Genetic neural networks on MIMD computers.

Unpublished doctoral dissertation, University of Edinburgh, Scotland.

Roberts, S. G., & Turenga, M. (1995). Evolving neural network structures.

In D. Pearson, N. Steele, & R. Albrecht (Eds.), International

Conference on Genetic Algorithms and Neural Networks (pp. 96–99).

New York: Springer-Verlag.

Schaffer, J. D. (1994). Combinations of genetic algorithms with neural

networks or fuzzy systems. In J. M. Zurada, R. J. Marks, II, & C. J.

Robinson (Eds.), Computational Intelligence Imitating Life (pp.

371–382). New York: IEEE Press.

Siddiqi, A. A., & Lucas, S. M. (1998). A comparison of matrix rewriting

versus direct encoding for evolving neural networks. Proceedings of the

1998 International Conference on Evolutionary Computation, Piscat-

away, NJ: IEEE Press, pp. 392–397.

Skinner, A., & Broughton, J. Q. (1995). Neural networks in computational

material science: Training algorithms. Modelling and Simulation in

Material Science and Enginnering, 3, 371–390.

Storrie-Lombardi, M., Lahav, O., Sodre, L., & Storrie-Lombardi, L. (1992).

Morphological classification of galaxies by artificial neural networks.

Monthly Notices of Royal Astronomical Society, 259, 8–12.

Thierens, D., 1995. Analysis and design of genetic algorithms. Doctoral

dissertation, Katholieke Universiteit Leuven, Leuven, Belgium.

Thierens, D., Suykens, J., Vandewalle, J., & Moor, B. D. (1991). Genetic

weight optimization of a feedforward neural network controller.

Proceedings of the Conference on Neural Nets and Genetic Algorithms,

Berlin: Springer, pp. 658–663.

White, R. L. (1999). Private Communication.

White, R. L., Becker, R., Helfand, D., & Gregg, M. (1997). A catalog of

1.4 GHz radio sources from the FIRST survey. Astrophysical Journal,

475, 479.

Whitley, D., & Hanson, T. (1989). Optimizing neural networks using faster,

more accurate genetic search. In J. D. Schaffer (Ed.), Proceedings of the

Third International Conference on Genetic Algorithms (pp. 391–397).

San Mateo, CA: Morgan Kaufmann.

Whitley, D., Starkweather, T., & Bogart, C. (1990). Genetic algorithms and

neural networks: Optimizing connections and connectivity. Parallel

Computing, 14, 347–361.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the

IEEE, 87(9), 1423–1447.

E. Cantú-Paz, C. Kamath / Neural Networks 16 (2003) 507–517 517


	Evolving neural networks to identify bent-double galaxies in the FIRST survey
	Introduction
	Identification of bent-double galaxies
	Features for bent-doubles

	Genetic neural networks
	Genetic algorithms
	Training networks with genetic algorithms
	Feature selection
	Using GAs to design the topology

	Experiments
	Fitness calculation
	Training networks with GAs
	Feature selection
	Using GAs to design the networks
	Comparison and discussion

	Conclusions
	Acknowledgements
	References


